Semantic Similarity in Automatic Speech Recognition for Meetings

نویسندگان

  • Gernot Kubin
  • Harald Trost
چکیده

This thesis investigates the application of language models based on semantic similarity to Automatic Speech Recognition for meetings. We consider data-driven Latent Semantic Analysis based and knowledge-driven WordNet-based models. Latent Semantic Analysis based models are trained for several background domains and it is shown that all background models reduce perplexity compared to the n-gram baseline models, and some background models also significantly improve speech recognition for meetings. A new method for interpolating multiple models is introduced and the relation to cache-based models is investigated. The semantics of the models is investigated through a synonymity task. WordNet-based models are defined for different word-word similarities that use information encoded in the WordNet graph and corpus information. It is shown that these models can significantly improve over baseline random models on the task of word prediction, and that the chosen part-of-speech context is essential for the performance of the models. No improvement over n-gram baseline models is achieved for the task of speech recognition for meetings.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WordNet-based Semantic Relatedness Measures in Automatic Speech Recognition for Meetings

This paper presents the application of WordNet-based semantic relatedness measures to Automatic Speech Recognition (ASR) in multi-party meetings. Different word-utterance context relatedness measures and utterance-coherence measures are defined and applied to the rescoring of N best lists. No significant improvements in terms of Word-Error-Rate (WER) are achieved compared to a large word-based ...

متن کامل

Latent Semantic Analysis based Language Models for Meetings

Language models that combine N -gram models with Latent Semantic Analysis (LSA) based models have been successfully applied for conversational speech recognition [3] and for the Wall Street Journal recognition task [1]. LSA defines a semantic similarity space using a training corpus. This semantic similarity can be used for dealing with long distance dependencies, which are an inherent problem ...

متن کامل

Automatic Construction of Persian ICT WordNet using Princeton WordNet

WordNet is a large lexical database of English language, in which, nouns, verbs, adjectives, and adverbs are grouped into sets of cognitive synonyms (synsets). Each synset expresses a distinct concept. Synsets are interlinked by both semantic and lexical relations. WordNet is essentially used for word sense disambiguation, information retrieval, and text translation. In this paper, we propose s...

متن کامل

A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation

Abstract   Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...

متن کامل

Combination of latent semantic analysis based language models for meeting recognition

Latent Semantic Analysis (LSA) defines a semantic similarity space using a training corpus. This semantic similarity can be used for dealing with long distance dependencies, which are an inherent problem for traditional wordbased n-gram models. Since LSA models adapt dynamically to topics, and meetings have clear topics, we conjecture that these models can improve speech recognition accuracy on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007